Любимое дело

Связи типы связей техническая механика. Виды связей и их реакции

Одним из основных понятий механики является понятие механической системы. Под механической системой понимают совокупность конечного или бесконечного числа материальных точек (или тел), взаимодействующих между собой в соответствии с третьим законом Ньютона. Отсюда следует, что движение каждой точки (или тела) системы зависит как от положения, так и от движения остальных точек рассматриваемой механической системы.

Системы различают свободные и несвободные. Система называется свободной, если все входящие в нее точки могут занимать произвольные положения и иметь произвольные скорости. В противном случае, т. е. когда материальные точки, входящие в систему, не могут занимать произвольных положений или же не могут иметь произвольных скоростей, система называется несвободной.

Примером свободной механической системы может служить солнечная система, в которой Солнце и планеты можно рассматривать как материальные тела, находящиеся под взаимным действием сил ньютонианского притяжения.

Примером несвободной системы может служить система, состоящая из точек, из которых одна или

несколько вынуждены при своем движении оставаться на каких-либо линиях или поверхностях.

С указанным делением систем на свободные и несвободные связано понятие связи.

Под связью в механике понимают условия, накладывающие ограничения на свободу перемещения точек системы. Связи могут накладывать ограничения как на положения точек, так и на их скорости. Практически связи осуществляются с помощью материальных тел или приспособлений (стержней, нитей, шарниров и т. п.).

Подобно тому как силы, действующие на точки системы, подразделяют на силы внутренние и силы внешние, так и связи, наложенные на точки системы, можно подразделить на связи внутренние и связи внешние. Под внутренними связями понимают такие связи, которые будучи наложены на точки системы, не препятствуют системе свободно перемещаться после того, как она внезапно отвердеет. Связь, не обладающая этим свойством, называется внешней. Например, если две точки твердого тела соединены между собой нерастяжимым и невесомым стержнем, то такая связь будет внутренней. Таким образом твердое тело можно рассматривать как систему, подчиненную внутренним связям. Если же одна из точек твердого тела шарнирно закреплена, то в этом случае связь будет внешней.

Система, подчиненная одним лишь внутренним связям, является свободной, так как она может перемещаться как свободное твердое тело. Если же в числе связей, наложенных на точки системы, имеются внешние связи, то система является несвободной.

Условия, ограничивающие свободу перемещения точек системы, аналитически выражаются в виде уравнений или неравенств вида.

где - время, - соответственно координаты и скорости точки системы,

отнесенные к некоторой инерциальной системе отсчета, относительно которой рассматривается движение данной системы.

Связи различают удерживающие и неудерживающие; первым соответствует знак равенства в (1.1), вторым - знак неравенства.

Удерживающие и неудерживающие связи иногда соответственно называют двухсторонними и односторонними связями. Удерживающая связь, препятствуя перемещению в одном направлении, препятствует также перемещению в противоположном направлении. Неудерживающая связь препятствует перемещению в одном направлении, но не препятствует перемещению в противоположном направлении.

Примером удерживающей связи могут служить две параллельные плоскости, между которыми происходит движение шарика. Рассматривая среднюю между ними плоскость как координатную плоскость получаем уравнение связи в виде: Если же шарик движется по горизонтальной плоскости любой момент может покинуть ее, то эта плоскость будет являться неудерживающей связью. Условие такой связи будет выражаться неравенством (или ).

Другим примером неудерживающей связи может служить нить с шариком на конце. Принимая точку подвеса нити за начало координат и считая нить нерастяжимой, можем условие этой связи записать в виде неравенства

где - координаты шарика, - длина нити.

Если в процессе движения шарика выполняется неравенство

то это означает, что нить ослаблена и шарик освободился от связи.

Если же при движении шарика выполняется равенство

то это означает, что нить натянута, и на шарик действует связь.

В зависимости от того, содержит ли уравнение связи в явном виде время или нет, связи подразделяются на нестационарные (реономные) и стационарные (склерономные).

Связи, которые накладывают ограничения только на положения точек системы, называются конечными или геометрическими; аналитически они выражаются уравнением

Здесь и в дальнейшем предполагаем связи удерживающими.

Если же связи накладывают ограничения не только на положения точек, но и на их скорости, то они называются дифференциальными или кинематическими, и их аналитическое выражение имеет вид

Связи подразделяют также на голономные и неголономные. К голономным связям относят все конечные или геометрические связи вида (1.2), т. е. все связи, которые накладывают ограничения на возможные положения точек системы. К голономным связям относятся также и дифференциальные связи, которые путем интегрирования могут быть приведены к соотношениям вида (1.2):

где - некоторые функции координат возможно, времени .

Если же дифференциальные связи вида (1.4) не могут быть путем интегрирования приведены к конечным соотношениям вида (1.2), то они называются

неголономными или неинтегрируемими. Г. Герц обратил внимание на важность различия между голономными и неголономными связями для понятия виртуального перемещения системы.

Легко видеть, что если голономные связи накладывают ограничения на возможные положения точек системы, то неголономные связи накладывают ограничения на скорости точек системы. Это следует из того, что уравнение неголономной связи (1.4) всегда может быть представлено в следующем виде:

Механические системы, подчиненные голономным связям, называются голономными системами. Если же в числе связей имеются неголономные, то системы называются неголономными.

Если на систему наложены только неголономные связи, то такая система называется сдвершенно неголономной или собственно неголономной.

Классическим примером движения неголономной системы может служить качение твердого шара по шероховатой плоскости (например, движение бильярдного шара).

Пусть твердый шар радиусом катится без скольжения по абсолютно шероховатой плоскости. Возьмем две системы координат с общим началом в центре шара С. Одна из них (система пусть движется поступательно, а вторая (система ) пусть будет жестко связана с шаром (рис. 1).

Положение шара в каждый момент времени может быть определено пятью координатами: двумя координатами центра шара (третья координата ) и тремя углами Эйлера: углом прецессии углом нутации 0 и углом собственного вращения (рис. 1). Условием связи в рассматриваемой задаче является условие касания шара с плоскостью и обращение

в нуль скорости точки А касания шара. Принимая центр шара С за полюс и обозначая его скорость через мгновенную угловую скорость вращения шара - через , а вектор-радиус, проведенный из центра шара в точку касания , - через , можем записать скорость точки А в следующем виде:

Проектируя это векторное равенство на оси координат и удовлетворяя условию связи получаем

где - составляющие вектора угловой скорости . Последнее уравнение интегрируется и дает одно уравнение связи показывающее, что центр шара С движется в плоскости, параллельной плоскости и отстоящей от нее на расстоянии, равном радиусу шара R.

Тела в природе бывают свободными и несвободными. Тела, свобода перемещения которых ничем не ограничена, называются свободными. Тела, ограничивающие свободу перемещения других тел, называются по отношению к ним связями .

Одним из основных положений механики является принцип освобождаемости от связей, согласно которому несвободное тело можно рассматривать как свободное, если отбросить действующие на него связи и заменить их силами – реакциями связей.

Очень важно правильно расставить реакции связей, иначе написанные уравнения окажутся неверными. Ниже приведены примеры замены связей их реакциями. На рисунках 1.1–1.8 показаны примеры замены реакциями сил, расположенных в плоскости.


а – тело весом G на гладкой поверхности;
б – действие поверхности заменено реакцией – силой R;
в – в точке А связь «опорная точка» или ребро;
г – реакции направлены перпендикулярно
опираемой или опирающейся плоскостям

Рисунок 1.1

Реакция гладкой поверхности всегда направлена по нормали к этой поверхности (рисунок 1.1). Реакция «невесомого» троса (нити, цепи, стержня) всегда направлена вдоль троса (нити, цепи, стержня) (рисунок 1.2).

Рисунок 1.6

На рисунке 1.7, а изображена бискользящая заделка. В плоскости данная опора допускает поступательное перемещение стержня как по горизонтали, так и по вертикали, но препятствует повороту (в плоскости). Реакцией такой опоры будет момент M C (рисунок 1.7, б).

Рисунок 1.7

Консоль (глухая или жесткая заделка) не допускает никакого перемещения детали. Реакцией такой опоры являются неизвестная по величине и направлению сила R A с углом α (или X A и Y A ) и момент Μ A (рисунок 1.8).

Рисунок 1.8

На рисунках 1.9 – 1.15 показаны примеры замены сил, расположенных в пространстве, их реакциями.

Шарнирно-неподвижная опора, или сферический шарнир (рисунок 1.9, а), заменена системой сил (рисунок 1.9, б) X A , Y A и Z A , т.е. силой, неизвестной по величине и направлению.

Если связь задаётся равенством, то говорят, что такая связь удерживающая или двусторонняя :

Если связь задаётся неравенством, то говорят, что такая связь неудерживающая или односторонняя :

Если функция зависит явно от времени, то говорят, что связь нестационарная или реономная . Если эта функция не зависит явно от времени, то говорят что эта связь стационарная или склерономная .

Литература

  • Берёзкин Е. Н. Курс теоретической механики - 2-ое издание, переработанное и дополненное - М .: Изд-во МГУ - 1974 г., 645 с.

Wikimedia Foundation . 2010 .

Смотреть что такое "Связь (механика)" в других словарях:

    - (от греч. mechanike (techne) наука о машинах, искусство построения машин), наука о механич. движении матер. тел и происходящих при этом вз ствиях между ними. Под механич. движением понимают изменение с течением времени взаимного положения тел или … Физическая энциклопедия

    МЕХАНИКА РАЗВИТИЯ - МЕХАНИКА РАЗВИТИЯ. Содержание: История......................18 Материалы и методы исследования........20 Проблема детерминации.............22 Два основных типа формообразования......26 М. р. и регенерация................30 Практическое значение М … Большая медицинская энциклопедия

    Химическая связь явление взаимодействия атомов, обусловленное перекрыванием электронных облаков, связывающихся частиц, которое сопровождается уменьшением полной энергии системы. Термин «химическое строение» впервые ввёл А. М. Бутлеров в 1861… … Википедия

    Раздел физики, в котором изучается движение тел под действием сил. Механика охватывает очень широкий круг вопросов в ней рассматриваются объекты от галактик и систем галактик до мельчайших, элементарных частиц вещества. В этих предельных случаях… … Энциклопедия Кольера

    Физика кристаллов Кристалл кристаллография Кристаллическая решётка Типы кристаллических решёток Дифракция в кристаллах Обратная решётка Ячейка Вигнера Зейтца Зона Бриллюэна Структурный фактор базиса Атомный фактор рассеяния Типы связей в… … Википедия

    - [от греч. mechanike (téchne) наука о машинах, искусство построения машин], наука о механическом движении материальных тел и происходящих при этом взаимодействиях между телами. Под механическим движением понимают изменение с течением… … Большая советская энциклопедия

    Напряжения в области контакта при одновременном нагружении нормальной и касательной силой. Напряжения определены методом фотоупругости Механика контактного взаимодействия занимается расчётом упругих, вязкоупругих и пластичных тел при статическом… … Википедия

    СВЯЗЬ - средство приобщения предметов (А, В, С и т. д.) друг к другу, способ пребывания одного в другом, разных в их единстве; форма бытия многого в едином. Вступающими в С. предметами А, В, С и т. д. могут быть любые определенности материального и (или) … Современный философский словарь

    - (волновая механика), теория, устанавливающая способ описания и законы движения микрочастиц (элем. ч ц, атомов, молекул, ат. ядер) и их систем (напр., кристаллов), а также связь величин, характеризующих ч цы и системы, с физ. величинами,… … Физическая энциклопедия

Книги

  • , Вебстер А.Г. , Эта книга создалась из лекций, которые я в продолжение последних четырнадцати лет читал в Clark University, главным образом, для моих слушателей курса физики. Очевидно, что она не… Категория: Математика Издатель: ЁЁ Медиа , Производитель: ЁЁ Медиа ,
  • Механика материальных точек твердых, упругих и жидких тел , Вебстер А.Г. , Эта книга создалась из лекций, которые я в продолжение последних четырнадцати лет читал в Clark University, главным образом, для моих слушателей курса физики. Очевидно, что она не… Категория:

Рассмотрим тело, которое может перемещаться без трения по гладкой горизонтальной поверхности (Рис.1а ).

Пусть в качестве активной силы выступает сила веса $\vec{Р}$, приложенная в его центре тяжести. Реакция связи $\vec{N}$ представлена силой, распределенной по плоскости нижней грани этого тела, и ее можно считать приложенной в центре этой грани.

Принципиально картина не меняется, если поверхность тела или связи будет гладкой, но криволинейной (Рис.1б ).

Пусть тело в виде бруса с гладкой поверхностью опирается в точке А на идеально гладкую поверхность, а в точке В – на уступ (Рис.1в ).

Нетрудно догадаться, что тело не сможет находиться в равновесии, если в качестве активной силы выступает его собственный вес, однако равновесие возможно, если к этому брусу приложить некоторую другую внешнюю силу $\vec{F}$. При этом, как будет показано в следующей главе, равновесие возможно только в том случае, если линия действия этой силы проходит через точку пересечения линий действия реакций $R_A$ и $R_B$.

Итак, по поводу этого типа связи можно сделать следующий вывод: реакция идеально гладкой поверхности приложена в точке касания и направлена по нормали к поверхности тела или связи .

2. Гибкая невесомая и нерастяжимая нить. Рассмотрим тело, которое подвешено на двух таких нитях и находится в равновесии под действием собственного веса и реакций нитей, прикрепленных к телу в точках А и В (Рис.2 слева ).

Слева: Гибкая невесомая и нерастяжимая нить

слева )
справа )

Реакция связи равна силе натяжения нити, она направлена вдоль нити и от тела, которое эта нить удерживает.

3. Жесткий невесомый прямолинейный стержень. Реакция направлена вдоль стержня , который, в отличие от нити, может воспринимать как растягивающие ($\vec{S_B}$), так и сжимающие ($\vec{S_A}$) усилия (Рис.2 справа ).

Справа : Жесткий невесомый прямолинейный стержень

Гибкая невесомая и нерастяжимая нить (слева )
Жесткий невесомый прямолинейный стержень (справа )

Допускает перемещение закрепленным таким образом точки тела только вдоль опорной плоскости (Рис.3а ).

Реакция направлена перпендикулярно заштрихованной опорной площадке.

В учебной литературе этот вид связи также называют подвижным цилиндрическим шарниром .

Помимо стандартного обозначения, предусмотренного ГОСТом, на схемах эту связь изображают так, как показано на рис.3б .

Отметим, что четыре рассмотренные связи имеют одну общую особенность: соответствующие им реакции известны по направлению и неизвестны по величине. То есть с точки зрения алгебры каждая из этих реакций соответствует только одному неизвестному .

Препятствует перемещению закрепленной таким образом точки тела в горизонтальном и вертикальном направлениях. Это означает, что в общем случае реакция $\vec{R_A}$ такой связи неизвестна по величине и по направлению . В качестве неизвестных при ее определении можно выбрать модуль реакции – $|\vec{R_A}|$ и угол $\varphi$, который она образует с осью Ox , либо проекции вектора $\vec{R_A}$ на оси координат: R AX , R AY (Рис.4а ).

Эта связь допускает поворот тела вокруг рассматриваемой точки, поэтому в учебной литературе эту связь также называют неподвижным цилиндрическим шарниром.

Помимо стандартного обозначения, предусмотренного ГОСТом, на схемах она изображается так, как показано на рис.4б .

6. Сферический шарнир. В отличие от цилиндрического шарнира не допускает перемещения закрепленной таким образом точки тела в трех взаимно перпендикулярных направлениях. В качестве неизвестных при ее определении выбирают проекции этой реакции на оси координат: R AX , R AY , R AZ (Рис.5 ).

Основной закон статики сформулирован для так называемых свободных систем , в которых все внешние силы являются задаваемыми , не зависящими от других сил. Вместе с тем, многие инженерные задачи сводятся к рассмотрению равновесия или движения систем, перемещения точек которых ограничены. В таких случаях возможно появление зависимости между внешними силами.

Тело, перемещениям которого в пространстве препятствуют какие-либо другие тела - связи , называют несвободным. В местах контакта системы со связью возникают силы.

Силу, с которой данная связь воздействует на тело, препятствуя его перемещению, называют силой реакции связи , или просто реакцией связи. Она равна по модулю силе давления на связь и противоположна ей по направлению. Введение реактивных сил приводит к разделению внешних сил, действующих на систему, на две группы:

  • задаваемые (активные) - это силы, величины которых могут не зависеть от других сил и назначаться произвольно. Эти силы не исчезают при удалении всех связей;
  • реакции связей (реактивные ) - это силы, появляющиеся после отбрасывания связей, величины которых зависят от активных сил. Реакции связей, как правило, неизвестны. Для их определения

надо решить задачу статики, рассматривая равновесие системы, или задачу исследования движения (в общем случае).

Указанный ранее подход учета влияния связей часто называют принципом освобождаемости. Заметим, что этот способ не является единственным. В гл. 4 изложена методика, согласно которой наличие связей учитывают на основании кинематических соображений.

Направление и точку приложения реакции связи в виде сосредоточенной силы устанавливают на основании опыта в зависимости от конструкции связи. Правильное определение направлений реакций связи очень важно при решении задач механики. Приведем некоторые примеры связей и их реакций.

Гладкая поверхность - это поверхность, трением о которую можно пренебречь (связи без трения относятся к так называемым идеальным связям). Реакция N гладкой поверхности или опоры направлена по общей нормали к поверхностям соприкосновения тел в точке касания и приложена к этой точке (рис. 1.10,я). В случае, когда поверхности контакта тела и связи - плоскости, положение точки приложения реакции (координатах) заранее не определено и находится из условий равновесия (рис. 1.10,6). Если одна из соприкасающихся поверхностей в месте контакта вырождается в точку, то реакция направлена по нормали к другой поверхности (рис. 1.10,с).

Рис. 1.10.

Нить. Реакция связи Г, выполненной в виде гибкой нити, направлена вдоль нити к точке ее подвеса (рис. 1.11).

Рис. 1.11.

Цилиндрический шарнир (подшипник). В зависимости от системы сил, приложенной к телу, вал шарнира может прижиматься к различным точкам внутренней поверхности «обоймы», из-за чего даже при отсутствии трения реакция такого шарнира неизвестна по направлению. Можно лишь утверждать, что главный вектор Я реактивных сил цилиндрического идеального шарнира расположен в

плоскости ху у перпендикулярной к оси шарнира, и проходит через центр шарнира. Для силы Я в этом случае наперед не известны ни

ее модуль

ни ее направление Za (рис. 1.12).

Рис. 1.12.

При решении практических задач часто силу Я заменяют ее двумя эквивалентными составляющими, направленными вдоль осей координат X и У (см. рис. 1.12).

Ненагруженный стержень - это стержень, на который не действуют силы по его длине ЛВ (рис. 1.13). Две силы, приложенные на концах такого стержня УУ"и могут его уравновесить только

тогда, когда они равны по модулю и направлены по одной прямой в противоположные стороны. Следовательно, реакция N невесомого шарнирно закрепленного стержня направлена вдоль линии, соединяющей центры шарниров, которыми стержень прикреплен к рассматриваемому телу и другой связи.

В процессе решения задач статики для несвободного твердого тела обычно отбрасывают все связи и применяют условия равновесия для свободного тела.

Лучшие статьи по теме